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Abstract. Environmental streamflow management can improve the ecological health of streams by returning modified flows 

to more natural conditions. The Ecological Limits of Hydrologic Alteration (ELOHA) framework for developing regional 10 

environmental flow criteria has been implemented to reverse hydromodification across the heterogenous region of coastal 

southern California (So. CA) by focusing on two elements of the flow regime: streamflow permanence and flashiness. Within 

ELOHA, classification groups streams by hydrologic and geomorphic similarity to stratify flow-ecology relationships. 

Analogous grouping techniques are used by hydrologic modelers to facilitate streamflow prediction in ungaged basins (PUB) 

through regionalization. Most watersheds, including those needed for stream classification and environmental flow 15 

development, are ungaged. Furthermore, So. CA is a highly heterogeneous region spanning a gradient of urbanization, which 

presents a challenge for regionalizing ungaged basins. In this study, we develop a novel classification technique for PUB 

modeling that uses an inductive approach to group regional streams by modeled hydrologic similarity followed by deductively 

determining class membership with hydrologic model errors and watershed metrics. As a new type of classification, this 

“Hydrologic Model-based Classification” (HMC) prioritizes modeling accuracy, which in turn provides a means to improve 20 

model predictions in ungaged basins, while complementing traditional classifications and improving environmental flow 

management. HMC is developed by calibrating a regional catalog of process-based rainfall-runoff models, quantifying the 

hydrologic reciprocity of calibrated parameters that would be unknown in ungaged basins, and grouping sites according to 

hydrologic and physical similarity. HMC was applied to 25 USGS streamflow gages in the south coast region of California 

and was compared to other hybrid PUB approaches combining inductive and deductive classification. Using an Average 25 

Cluster Error metric, results show HMC provided the most hydrologically similar groups according to calibrated parameter 

reciprocity. Hydrologic Model-based Classification is relatively complex and time-consuming to implement, but it shows 

potential for advancing ungaged basin management. This study demonstrates the benefits of thorough stream classification 

using multiple approaches, and suggests that Hydrologic Model-based Classification has advantages for PUB and building the 

hydrologic foundation for environmental flow management. 30 
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1 Introduction 

The natural variability of streamflow regimes, including flow magnitude, duration, frequency, timing, and rate of 

change (Poff et al., 1997), is crucial for maintaining the ecological integrity of streams (Bunn and Arthington, 2002). 

Maintenance of aquatic and riparian ecosystem functions is a major priority for water managers; however, streamflow regimes 

have been altered globally as population growth and development lead to urbanization, dams, flow extraction, and other land 35 

use changes (Naiman et al., 1995; Richter et al., 1997). Environmental flow criteria frameworks, such as the Ecological Limits 

of Flow Alteration (ELOHA) (Poff et al., 2010), are methods for protecting the ecological health of streams from hydrologic 

alteration by reestablishing essential elements of streamflow and sediment regimes. The ELOHA framework is robust because 

it synthesizes many flow-ecology relationships from a study area to provide a foundation for developing environmental flow 

recommendations within an entire municipality or management region (Poff et al., 2010). Such a regional approach has been 40 

recommended for the widespread implementation of environmental flows because it allows for effective and comprehensive 

estimation of environmental streamflow regimes at a wide variety of streams in a large and diverse study area (Arthington et 

al., 2006). The coastal area of southern California (So. CA) is experiencing substantial hydrologic alteration (Hawley and 

Bledsoe, 2011) and associated ecological decline (Stein et al., 2012), which has prompted application of ELOHA (Mazor et 

al., 2018; Parker et al., 2019; Pyne et al., 2017; Sengupta et al., 2018; Stein et al., 2017). The region is highly heterogenous, 45 

spanning an extensive range of geology, stream types, and land uses, which presents unique challenges for implementing 

ELOHA. 

Stream classification is one of four major steps within the scientific process of ELOHA used to group hydrologically, 

or otherwise similar, streams (Poff et al., 2010). Its primary role towards developing environmental flows is to stratify flow-

ecology relationships by regional stream type, and to help determine where new bioassessment sites should be placed to 50 

strengthen the variety of sites within a region. Olden et al. (2012) outlined two overarching approaches to hydrologic 

classification—those utilizing inductive reasoning (observed or modeled flows) and those utilizing deductive reasoning 

(watershed data characterizing flow). While the inductive approach benefits from actual measures of discharge, it is often 

plagued by insufficient gauging networks (Olden et al., 2012) and uncertainty modeling ungaged basins (Blöschl et al., 2013). 

Two mirroring state-wide stream classification studies utilizing both inductive and deductive approaches have recently been 55 

performed across California. Pyne et al. (2017) first clustered all stream reaches based on similarity of watershed 

characteristics, then used hydrologic metrics to determine cluster membership and separate reference reaches. Conversely, 

Lane et al. (2017) grouped the natural streamflow regime of all reaches before using watershed characteristics to determine 

flow type. A third state-wide classification study was performed by Lane et al. (2018), which unified the classifications of 

Pyne et al. (2017) and Lane et al. (2017) by using daily-scale hydrologic baseline archetypes based on dimensionless reference 60 

hydrographs. These three stream classification studies focused on characterizing natural flow regimes across California, which 

is a challenge in the heavily hydrologically modified and heterogeneous Southern Coast hydrologic region of CA (Waananen 

and Crippen, 1977). Sites from this region did not show strong separate from the rest of CA in previous classifications. While 
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most South Coast streams were classified as “rain and seasonal groundwater” (Lane et al., 2017) or “rain and seasonal 

groundwater” and “flashy, ephemeral rain” (Lane et al., 2018), not one of the 91 reference gages used to drive the Lane et al. 65 

(2017) classification fell in the South Coast. Furthermore, streams in the Mohave Desert and Central Valley shared the same 

“rain and seasonal groundwater” classification and South Coast streams (Lane et al., 2017). Central Valley streams remained 

grouped with South Coast streams in the unified classification (Lane et al., 2018). Finally, none of the seven classes produced 

by Pyne et al. (2017) were dominated by South Coast streams. The results of these three state-wide classifications indicate 

developing environmental streamflow criteria for South Coast streams could benefit from a more targeted classification 70 

focused on the diverse regional landscape.  

Regionalization is a common framework for predicting streamflow in ungaged basins (PUB) that is performed by 

transferring hydrologic information from gaged systems to ungaged (Blöschl et al., 2013; Razavi and Coulibaly, 2013). While 

regionalization often employs regression equations to compute singular streamflow metrics, such as peak flow, continuous 

hydrologic models offer process-based analyses with full hydrograph outputs that can be used to analyze past and future 75 

climate, land use, and management scenarios. The application of hydrologic models to these alternative scenarios makes them 

important for developing the hydrologic foundation within ELOHA (Poff et al., 2010). Additionally, a hydrologic foundation 

often necessitates modeling of ungaged basins because crucial bioassessment sites used to develop flow-ecology relationships 

often occur on small streams without available representative streamflow data (Poff and Ward, 1989). Despite the clear 

importance of PUB to ELOHA and other stream management efforts, no superior method for regionalizing hydrologic models 80 

has emerged (Blöschl et al., 2013).  

In a typical flow regionalization effort with hydrologic models, a network of models is created and calibrated at gaged 

sites across a study area. For ungaged sites within the network, model parameters that cannot be calculated directly are 

estimated and/or transferred from the catalog of calibrated models, typically using a measure of spatial proximity, physical 

similarity, or parameter regression (Oudin et al., 2008; Razavi and Coulibaly, 2013; Samuel et al., 2011). While spatial 85 

proximity is generally the preferred regionalization approach (Razavi and Coulibaly, 2013), it is not always superior and is 

less applicable in highly heterogeneous regions, such as So. CA, where neighboring watersheds may have substantially 

different geology, land use, and/or climate. These challenges with applying a traditional regionalization approach in a highly 

heterogenous region provide opportunities for PUB innovations. Furthermore, the technique of grouping similar streams is 

shared by ELOHA and PUB, which provides an excellent opportunity to explore new approaches for classifying streams with 90 

the intention of modeling ungaged basins while developing environmental flow criteria in a highly heterogeneous region.  

This study was motivated by a desire to improve the science supporting environmental streamflows in So. CA where 

flow criteria are under development (Mazor et al., 2018; Parker et al., 2019; Sengupta et al., 2018; Stein et al., 2017). In this 

study, we develop a new method of stream classification that quantifies hydrologic similarity for regionalizing ungaged basins 

in a heterogeneous region. We compare this new approach to traditional methods of stream classification using hydrologic and 95 

watershed characteristics. Towards this end, this study has three specific objectives: 

1) Classify streams in coastal southern California using the best current practices; 
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2) Develop and implement a new approach for stream classification that prioritizes the accuracy of regional 

hydrologic models; and 

3) Compare the accuracy of traditional classifications versus the new approach for estimating streamflow and 100 

flow-ecology relationships in heterogeneous ungaged basins. 

We hypothesize that directly incorporating regional model accuracy into a stream classification scheme will provide 

information complementary to existing deductive and inductive schemes and demonstrate greater ability to accurately model 

ungaged basins through regionalization, compared to the traditional classifications.   

2 Methods 105 

2.1 Study Area 

This study was focused within the large coastal region of southern California, which is roughly bounded by the 

transverse mountain ranges to the north, Mexico to the south, the peninsular mountain ranges to the east, and the Pacific Ocean 

to the west. Study watersheds lie within the coastal regions of San Diego, Riverside, Orange, San Bernardino, Los Angeles, 

Ventura, and Santa Barbara Counties, and are considered within the “South Coast” hydrologic region of CA according to the 110 

U.S. Geological Survey (USGS) (Waananen and Crippen, 1977). The climate is characterized as semi-arid and Mediterranean 

with hot, dry summers and mild, wet winters. Diverse regional topography, geology, and precipitation patterns allow for the 

natural existence of many stream types, spanning perennial, intermittent, and ephemeral. Land use varies dramatically across 

the region ranging from heavily urban and suburban sprawl, to significantly agricultural, to rural coastal and mountainous. 

These diverse land uses profoundly influence streamflows, with particular deviation from natural flow regimes occurring due 115 

to the urban centers of Los Angeles and San Diego concurrently with the California State Water Project.  

As a first step towards developing environmental flow criteria, only USGS stream gage sites were considered with 

neighboring bioassessment sites from the California Water Boards’ Perennial Streams Assessment (PSA) within the Surface 

Water Ambient Monitoring Program (SWAMP). This provided gaged flow estimates at bioassessment sites. Hydrologic 

surrogacy between gage and bioassessment sites was assumed by ensuring a difference in watershed area of less than 15% 120 

with no intervening dams, diversions, reservoirs, or interbasin transfers. Gages from the region were selected to contain high-

resolution hourly streamflow data for water years (WY) 2005-2007, which typify relatively wet, average, and dry years 

consecutively in So. CA (WRCC, 2015). Finally, watersheds of selected gages required sufficient meteorological and 

landscape data to build minimally calibrated rainfall-runoff models (Sect. 2.3.1). An exhaustive search for suitable streamflow 

records yielded 25 USGS gage sites for classification (Fig. 1; Table A1). 125 
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Figure 1: Locations of USGS streamflow gages used for classification. 

2.2 Traditional Classification 

Three types of traditional classification were used in this study: an inductive approach with gaged flow data, a 

deductive approach utilizing watershed characteristics, and a combined inductive and deductive approach applying both types 130 

of data. 

2.2.1 Inductive Approach 

Previous research in So. CA has shown streamflow flashiness and drying have important influence on shaping local 

benthic macroinvertebrate assemblages (Gasith and Resh, 1999; Mazor et al., 2018; Parker et al., 2019). This influence makes 
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them strong metrics for developing flow-ecology relationships to guide environmental flow recommendations. To this end, 135 

flashiness and drying have been extensively studied for developing regional flow criteria (Mazor et al., 2018; Parker et al., 

2019; Pyne et al., 2017; Sengupta et al., 2018; Stein et al., 2017); however, additional elements of the natural flow regime are 

also important drivers of ecological health in CA (Yarnell et al., 2020). For this study, Richards-Baker Flashiness Index (RBI) 

(Baker et al., 2004) and a metric quantifying the frequency of extremely low flows indicative of drying were computed from 

the 25 hourly time series of discharge. RBI was calculated according to Eqn. 1, wherein Qt is the discharge at time t, Qt+1 is 140 

the discharge at time step after t, and T is the final time step. 

𝑅𝐵𝐼 =
∑ |𝑄𝑡+1−𝑄𝑡|𝑇

𝑡=1

∑ 𝑄𝑡
𝑇
𝑡=1

            (1) 

To quantify the frequency of extremely low flows indicative of drying, the fraction of flow record with flow less than 

1 cfs was calculated according to Eqn. 2, wherein NQ<1cfs is the number of time steps containing streamflow less than 1 cfs 

and N is the total number of time steps containing flow data. 145 

< 1 𝑐𝑓𝑠 =
𝑁𝑄<1𝑐𝑓𝑠

𝑁
           (2) 

Although flows less than 1 cfs are recorded by USGS, this threshold was chosen to indicate stream drying given the 

inherent measurement error associated with stream gage data at extreme low flows. Due to So. CA’s heterogeneous landscape, 

large variations in land use, topography, and precipitation shape flow permanence and flashiness across the region (Table A1). 

To better discern the effects of these heterogeneities on streamflow, and to more accurately capture time-sensitive 150 

environmental flow metrics on a scale relevant to benthic macroinvertebrates, hourly data were chosen over daily. 

Additionally, high resolution hourly data across So. CA provide an opportunity to complement the previous state-wide 

classifications (Lane et al., 2017; Lane et al., 2018; Pyne et al., 2017), which used daily data, at finer temporal and spatial 

scales. 

 Inductive classification was performed to group sites based on similarity of streamflow flashiness (RBI) and 155 

permanence (< 1 cfs). To achieve this, a variety of exploratory ordination analyses were conducted to develop an initial 

understanding of how gages might classify. Weighted classical (metric) multidimensional scaling within the “vegan” package 

of R (Oksanen et al., 2019) complemented principal component analysis (PCA) and a scree plot from the “stats” package (R 

Core Team, 2019). Classification was ultimately determined using K-means clustering from the NbClust package in R (Charrad 

et al., 2014) after assessing the following indices: C-Index, Dunn, McClain, and Silhouette. 160 

2.2.2 Deductive Approach 

For traditional deductive classification, watershed data describing USGS streamflow gages were retrieved from the 

USGS’s GAGES-II database (Falcone, 2011) and the U.S. Environmental Protection Agency’s (EPA) NHDPlusV2 database 

(McKay et al., 2012). Correlation was performed with the “stats” package in R (R Core Team, 2019) to remove highly 
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correlated watershed metrics. Finally, the same exploratory ordination analyses and clustering process as the inductive 165 

approach provided results for traditional deductive classification.   

2.2.3 Combined Inductive and Deductive Approaches 

Inductive and deductive methods of stream classification were combined in multiple ways. First, a single K-means 

clustering analysis was performed using the hydrologic metrics (RBI and < 1 cfs) and the best performing watershed variables 

from the deductive classification. Next, multinomial logistic regression within the “nnet” package of R (Venables and Ripley, 170 

2002) was used to determine if flow metrics could predict deductively produced clusters, and likewise used to see if landscape 

metrics could predict inductively produced clusters. Finally, the USGS has categorized streamflow gages containing minimally 

disturbed watersheds without significant flow alteration as “reference” within the GAGES-II database (Falcone, 2011). 

Multinomial logistic regression with flow and watershed metrics was again used to predict whether a gage was reference or 

non-reference. 175 

2.3 Hydrologic Model-based Classification 

Hydrologic Model-based Classification (HMC) first requires the accurate creation and calibration of rainfall-runoff 

models across a region, exactly like regionalization for estimating streamflow in ungaged basins. Parsimonious and minimally-

calibrated models are important to HMC so that physical relationships between regional watershed variables and highly 

uncertain model parameters might be established. Rather than using tradition inductive measures of streamflow to assess 180 

hydrologic similarity for classification, HMC quantifies the hydrologic similarity between two sites as the reciprocating model 

accuracy when calibrated parameters from one model are donated to the other and vice versa. Representing hydrologic 

similarity with model errors produced by a regional range of parameters is a new idea in regionalization that can be used to 

quantify and reduce parameter uncertainty. Calibrated parameters inherently have greater uncertainty than directly calculated 

parameters, and this uncertainty is substantially increased in ungaged basins where calibration cannot occur. HMC uses 185 

jackknife resampling of complete calibrated parameter sets for all models across the region to generate a model-error matrix 

of hydrologic similarity spanning the region. The regional error matrix can be interpreted as quantitatively describing 

parameter uncertainty for the most uncertain parameters across a region. In HMC, the error matrix is used as an inductive basis 

of hydrologic similarity and combined with a deductive approach to produce a new combined classification that directly 

incorporates regionalization and reduces parameter uncertainty in models of ungaged basins. Ultimately, classifying models 190 

with reciprocally low errors provides a subset of parameters from a calibrated regional catalog with reduced uncertainty. Figure 

2 provides an overview of the process for HMC. 
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Figure 2: Flowchart overviewing novel Hydrologic Model-based Classification (HMC). 

2.3.1 Hydrologic Models 195 

Hydrological models were created in the US Army Corps of Engineers Hydrologic Engineering Center’s Hydrologic 

Modeling System (HEC-HMS) 4.1 at the 25 gages. Continuous simulations were performed on an hourly time step over WY 

2005-2007 to capture a period spanning a wide range of typical hydrologic conditions (WRCC, 2015). Hourly precipitation 

data were input from the California Irrigation Management Information System (CIMIS), California Data Exchange Center 

(CDEC), Climate Data Online from the National Oceanic and Atmospheric Administration (NOAA), San Diego County Flood 200 

Control District (SDCFCD) and Ventura County Watershed Protection District (VCWPD). CIMIS gages also provided 

monthly average evapotranspiration data. Independent watershed delineations in ArcMap 10.1 using a 30m digital elevation 

model from The National Map (USGS, 2019), NHDPlus V2 (McKay et al., 2012), and National Land Cover Database (NLCD) 

(Fry et al., 2011) were verified by USGS StreamStats data (USGS, 2019). Inverse distance was used to weight precipitation 

gages from each watershed’s centroid. Simple canopy (interception and transpiration) and surface (infiltration) parameters 205 

were estimated from delineated data. HEC-HMS model parameters associated with the deficit and constant loss element 

(infiltration) were calculated directly using soil and imperviousness data available from USGS GAGES-II (Falcone, 2011). 

Similarly, the time of concentration and Clark unit hydrograph storage coefficient used within the Clark unit hydrograph 

transform element were calculated directly using the Kirpich method (Kirpich, 1940) and standard approaches utilized by the 

Arizona Department of Transportation (ADOT, 2014). To produce minimally calibrated models, methods were selected to 210 

balance simplicity and parameter parsimony with reliable and process-based hydrology. The Kirpich Method, for example, 

contains only two parameters, which facilitates straightforward calculations in data-scare areas. It is a long-trusted method for 

estimating time of concentration (USDA NRCS, 2007) that is highly effective across a wide range of conditions in a similar 

region (Roussel et al., 2005). 

After directly estimating and calculating parameters associated with precipitation losses and hydrograph 215 

transformation, only two linear reservoir baseflow parameters were calibrated for the 25 modeled watersheds. Initial flow 

values were known using streamflow gage data, and a single linear reservoir was used for each of the two groundwater layers. 
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These two layers were connected in parallel with the both groundwater layers combining to produce a total baseflow (USACE, 

2000). As such, only the groundwater storage coefficient for each layer was altered during calibration.  

Flashy floods and periods of little precipitation have strongly influenced the evolution of healthy freshwater aquatic 220 

ecosystems in So. CA (Gasith and Resh, 1999). In continuing with this study’s focus on streamflow flashiness and permanence 

as ecologically-relevant management metrics, models were calibrated to optimize RBI and < 1 cfs. While the accuracy of a 

singular measure of overall fit is typically used for hydrologic model calibration (Bardossy, 2007; Beven, 2012), environmental 

flow studies have shown it is not ideal for modeling ecological flow metrics (Cassin et al., 2005; Murphy et al., 2013; Parker 

et al., 2019; Vis et al., 2015). As a result, calibration accuracy of flashiness and flow permanence were equally considered and 225 

combined into one “Ecologically-Focused Combined Calibration” (EFCC), which has been used to calibrate hydrologic 

models for ecological applications in So. CA (Parker et al., 2019). EFCC (Eqn. 4) equally weights the percent error (Eqn. 3) 

of RBI (Eqn. 1) and < 1 cfs (Eqn. 2). 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 (%) =   (
|𝐺𝑎𝑔𝑒 𝑓𝑙𝑜𝑤 𝑚𝑒𝑡𝑟𝑖𝑐−𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝑓𝑙𝑜𝑤 𝑚𝑒𝑡𝑟𝑖𝑐|

𝐺𝑎𝑔𝑒 𝑓𝑙𝑜𝑤 𝑚𝑒𝑡𝑟𝑖𝑐
) ∗ 100      (3) 

𝐸𝐹𝐶𝐶 (%) = [
(

|𝐺𝑎𝑔𝑒 𝑅𝐵𝐼−𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝑅𝐵𝐼|

|𝐺𝑎𝑔𝑒 𝑅𝐵𝐼|
)∗100+(

|𝐺𝑎𝑔𝑒<1 𝑐𝑓𝑠−𝑀𝑜𝑑𝑒𝑙𝑒𝑑<1 𝑐𝑓𝑠|

|𝐺𝑎𝑔𝑒<1 𝑐𝑓𝑠|
)∗100

2
]      (4) 230 

2.3.2 Jackknife Resampling Error Matrix 

To compute hydrologic similarity among the regional network of minimally calibrated hydrologic models, storage 

coefficients and initial discharges of both groundwater layers were donated from one model to all 24 remaining models. This 

was done for every model in the region in a process known as jackknife resampling (Efron, 1982; Friedl and Stampfer, 2014). 

Model parameters directly calculated or estimated from available landscape data were not jackknifed. Initial baseflow 235 

discharges were included in the jackknife analysis and are treated as calibrated parameters because they would be unknown in 

a PUB analysis. For each individual model’s calibrated parameters, jackknife resampling generated 24 time series 

characterizing streamflow across the region. The accuracy of each simulated hydrograph resulting from jackknifed parameters 

was assessed by comparing to the 24 observed USGS streamflow gages. The true gage streamflow data do not affect the 

jackknifing process because they are only used to determine the accuracy of the output flow data resulting from the jackknifed 240 

parameters. The accuracy of each jackknifed parameterization was calculated for the entire 25x24 matrix of time series data 

using the EFCC (Eqn. 4) scaled by minimum and maximum errors, resulting in a normalized 25x24 matrix quantifying the 

accuracy of each calibrated model when its calibrated parameters were directly input into all other models. Each sites’ original 

calibration error was added to the matrix such that a normalized 25x25 matrix was produced with very small calibration errors 

spanning the diagonal. 245 
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2.3.3 Combined Inductive and Deductive Approach 

Combining inductive and deductive approaches for Hydrologic Model-based Classification was very similar to the 

combined approach under traditional classification that implemented multinomial logistic regression. Using the jackknife error 

matrix of hydrologic similarity, weighted classical (metric) multidimensional scaling, PCA, and a scree plot provided a sense 

of how sites might cluster. K-means clustering with C-Index, Dunn, McClain, and Silhouette indices was used to split sites 250 

into reciprocating low model-error clusters. This inductive approach produced groups of hydrologically similar gages, as 

measured by a site’s ability to accurately model all other sites within its group. A deductive approach was added to HMC by 

using multinomial logistic regression to determine if watershed variables could predict low-error cluster membership. 

2.4 Classification Assessment 

To better understand the utility of each classification towards estimating flow in ungaged basins, a performance metric 255 

dubbed “average cluster error” (ACE) was developed for this study. ACE characterizes the errors produced by donated 

parameters within a classification method and its classes. Low-error classifications and classes indicate greater certainty in 

donated calibrated parameters, which inherently contain high uncertainty in models of ungaged basins. Classifications and 

classes with low ACE values may provide the foundation for accurately modeling ungaged basins with regionalization. ACE 

was modeled after the cross-validation standard error (CVSE) statistic presented by Wortman (2005) and is displayed in Eqn. 260 

5, wherein C is the total number of clusters produced by a specific classification, c represents each cluster, S is the total number 

of sites within the given cluster, s is each site from the cluster, Normalized Errors is taken directly from the jackknife error 

matrix, and P is the total number of sites (25 in this study). 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐸𝑟𝑟𝑜𝑟 =
∑ ∑ (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟𝑠𝑠)𝑆

𝑠=1
𝐶
𝑐=1

𝑃
       (5) 

The following example helps explain how Eqn. 5 was used: Say a specific classification divided the 25 sites into 5 265 

equal groups split chronologically (Sites 1-5, 6-10, 11-15, etc.). Total error for the first group would be computed by summing 

all within cluster errors (when site 1 parameters were applied to Sites 2, 3, 4, and 5; when site 2 parameters were applied to 

Sites 1, 3, 4, and 5; etc. for site 3, 4, and 5 parameters). This same process would be repeated for the four remaining groups 

and summed to produce a final total error. The total error would be divided by 25 sites to yield a single metric quantifying the 

average model error across all sites, exclusive to a specific classification. Following this procedure, ACE values can also be 270 

computed for individual clusters unique to one classification, wherein the number of sites assigned to the specific group of 

interest would take the place of P (P = 5 when only considering one cluster from the example above), and the ∑ ()𝐶
𝑐=1  term 

would not be used because only one cluster from the classification is considered. Because all sites receiving each model’s 

parameters were treated as ungaged basins during jackknife resampling, the ACE statistic provides insight regarding how well 

different classifications, or different groups within one classification, might be incorporated into regionalization. 275 
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Additionally, the adjusted Rand index (ARI) was computed between each traditional classification technique and 

Hydrologic Model-based Classification to compare the similarity of any two unique classification. ARI typically ranges from 

0 to 1, wherein a value of 0 indicates no similarities between clusters and a value of 1 represents identical clusters; however, 

negative values can occur if class similarity is less than what would be expected during random clustering (Hubert and Arabie, 

1985). Essentially, ARI values near 0 indicate a classification scheme provides unique groups that do not overlap. Specifically, 280 

the “clues” package in R (Chang et al., 2010) was implemented to compute an ARI between all suitable classifications.  

Between the two measures for assessing classifications in this study, ARI provides an understanding of each 

classification’s ability separate its data, while ACE reflects the ability of a classification, or cluster within a classification, to 

estimate streamflow in ungaged basins. ARI is a more general metric for insight into data clustering, while ACE is a specific 

metric focused on cluster performance in ungaged basins. More generally, ARI quantifies between cluster variability while 285 

ACE quantifies within cluster variability. 

3 Results 

3.1 Traditional Classification 

3.1.1 Inductive Approach 

Classification of hourly flashiness and flow permanence metrics in coastal southern CA resulted in three classes (Fig. 290 

3). Sites were essentially split according to flow permanence with intermittent streams containing below-average flashiness 

(Class 1 with 6 sites), perennial streams spanning the full range of flashiness (Class 2 with 10 sites), and ephemeral streams 

spanning the full range of flashiness (Class 3 with 9 sites). The intermittent class contained the smallest average cluster error 

with the least within cluster variability (0.2, Fig. 3), indicating calibrated parameters from models of these streams possessed 

the least uncertainty. Likewise, the perennial class had the least utility towards ungaged basins because it contained the most 295 

within cluster variability (ACE = 0.9, Fig. 3). When considering all three clusters produced by traditional inductive 

classification, the ACE was 0.6 (Fig. 3). 
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Figure 3: Results of inductive approach to traditional classification. Specifically, (a) mean predictor metric values and ACE for the 

different classes and overall classification; (b) ordination plot illustrating metric values across clusters. 300 

3.1.2 Deductive Approach 

Classification of watershed characteristics yielded five classes with drainage area and soil content, specifically the 

percentage of Hydrologic Soil Group C (HGC), providing a parsimonious classification (Fig. 4). These two watershed 

variables were log-transformed within the K-means algorithm to address the right skewed nature of drainage area caused by 

a few large basins. Sites were primarily divided by drainage area, and secondarily by HGC, to generate classes of small 305 

basins with low HGC (Class 3 with 3 sites), small basins with high HGC (Class 5 with 7 sites), medium-sized basins with 

low HGC (Class 1 with 5 sites), medium-sized basins with high HGC (Class 2 with 7 sites), and large basins with high HGC 

(Class 4 with 3 sites). The large basin with high HGC class contained the smallest ACE (0.2, Fig. 4), while the medium-sized 

basin with low HGC provided the largest (0.6, Fig. 4). An ACE of 0.4 was computed after considering all five clusters 

produced by traditional deductive classification (Fig. 4). 310 

 

Figure 4: Results of deductive approach to traditional classification. Specifically, (a) mean predictor metric values and ACE for the 

different classes and overall classification; (b) ordination plot illustrating metric values across clusters. 

3.1.3 Combined Inductive and Deductive Approaches 

Neither an expanded cluster analysis nor predicting inductively and deductively produced clusters with the selected 315 

watershed characteristics and flow metrics, respectively, improved classification over the individual inductive and deductive 

approaches. New multinomial regression models were developed to accurately predict traditional inductive clusters with 

drainage area, % clay soil, minimum elevation, and annual minimum precipitation, and predict gage reference status with 

drainage area, % silt soil, baseflow index, and relative humidity. 

https://doi.org/10.5194/hess-2021-553
Preprint. Discussion started: 10 January 2022
c© Author(s) 2022. CC BY 4.0 License.



13 

 

3.2 Hydrologic Model-based Classification 320 

3.2.1 Models 

Calibration of the 25 HEC-HMS models at USGS gages was successful. Overall, the flashiness and flow permanence 

calibration criteria were modeled extremely accurately. Average percent errors of both RBI and < 1 cfs were well under 1%. 

3.2.2 Combined Inductive and Deductive Approach 

Hydrologic Model-based Classification combined inductive and deductive classification to produce a multinomial 325 

logistic regression model (deductive classification) that uses landscape variables to predict membership of five hydrologically-

similar groups of models (inductive classification) (Fig. 5). The inductive approach used in HMC does not group sites by the 

similarity of measured or modeled metrics, as is done traditionally, but instead groups sites to maximize model accuracy when 

calibrated models’ parameters are donated to all other sites within a group. Despite this important distinction, streamflow 

flashiness and permanence were well distributed across the five hydrologic model-based clusters (Fig. 5). A multinomial 330 

logistic regression model was able to predict low-error class membership with 4% error (24 sites matched correctly) using 

drainage area, sandy soil content, mean annual precipitation, and mean annual minimum precipitation. The number of sites 

was distributed less evenly across classes for Hydrologic Model-based Classification than traditional methods, with the first 

two clusters containing two sites each, the third cluster containing three, the fourth containing five sites, and the final cluster 

containing over half the sites with 13. As such, it is no surprise that class five contained the largest within cluster variability 335 

(ACE = 0.5, Fig. 5), and is subsequently its worst performing group in ungaged basins. However, no other class within HMC 

produced an ACE greater than 0.1, which contributes to HMC owning the lowest within cluster variability across all 

classifications (ACE = 0.3, Fig. 5).  

Stream classes produced by HMC include medium-sized basins with flashiness on both the high (Class 1) and low 

(Class 4) end. Flashy Class 1 streams receive the least precipitation and are located in southern San Diego County. Non-flashy 340 

Class 4 streams comprise the two eastern-most sites. Medium-small basins (Class 3) receive relatively little precipitation and 

are located near the coast, while large-medium basins (Class 5) receive the most precipitation and are spread throughout the 

study area. The largest basins (Class 2) are slightly flashier and drier than the large-medium basins (Class 5). These Class 2 

streams are concentrated in the northern area of the study area. 
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 345 

Figure 5: Results of Hydrologic Model-based Classification (HMC). 

3.3 Adjusted Rand Index (ARI) 

The geographical distribution of four unique classifications are displayed in the Appendix (Fig. A1), including 

traditional inductive (flow metrics), traditional deductive (watershed characteristics), a hybrid inductive/deductive (GAGES-

II reference sites), and hydrologic model-based as a hybrid inductive/deductive (model accuracy and watershed 350 

characteristics). Results of the ARI analysis show no major similarities and large variability between classifications, with the 

strongest relationship between GAGES-II reference sites and inductive classification (ARI = 0.12, Table 1). Inductive and 

Hydrologic Model-based Classifications were most different with an ARI of -0.04 (Table 1). 
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Table 1: Adjusted Rand Index (ARI) among four unique classifications. The strongest relationship between classifications is 355 
underlined. 

4 Discussion 

Hydrologic Model-based Classification introduces a new way to think about stream similarity, which can improve 

the accuracy of hydrologic modeling and environmental flow management in ungaged basins. For hydrologic modeling, HMC 

can be incorporated into iterative development of a hydrologic foundation and it supplies the foundation for an improved 360 

approach to regionalization of ungaged basins. As a management tool, HMC streamlines priority environmental flow metrics 

in ungaged basins. 

4.1 Hydrologic Model-based Classification and environmental flow management 

Using Hydrologic Model-based Classification to incorporate regionalization for modeling ungaged basins into stream 

classification provides an opportunity to improve environmental streamflow studies that require ungaged data. ELOHA is an 365 

iterative process with significant feedback loops; however, stream classification is recommended to occur second, after 

developing a hydrologic foundation, and no guidance is provided on how classification might inform the hydrologic foundation 

or vice versa (Poff et al., 2010). Because the hydrologic foundation generates baseline and current hydrographs at sites with 

bioassessment data, many of which are ungaged, reciprocally low-error classes produced by HMC could be utilized in a 

modeling framework to increase the hydrologic foundation’s accuracy. Switching the order of the first two steps in ELOHA, 370 

and first classifying sites using HMC, could improve streamflow estimation in ungaged basins as a part of the hydrologic 

foundation. At the very least, developing the hydrologic foundation could be iterative with classification as key characteristics 

of the sites become better understood, especially if ungaged basins must be modeled.  

The primary role of stream classification, as one of the four major steps of ELOHA, is to strengthen and standardize 

regional flow-ecology relationships so that they may be better implemented for water management (Poff et al., 2010); however, 375 

it is the one step of ELOHA some studies have determined unnecessary and bypassed (Kendy et al., 2012). To this point, large-

scale classifications in the Chesapeake Bay watershed (Buchanan et al., 2011) and Western US, including a separate 

classification in California, (Hawkins and Vinson, 2000) did not improve benthic macroinvertebrate explanatory power. While 

this study has demonstrated how the primary application of stream classification is useful in coastal southern California, it has 

also introduced HMC to extend classification beyond its traditional role to modeling ungaged basins for developing a 380 

hydrologic foundation in any region. It is likely that more accurate hydrologic foundation would create more accurate flow-

ecology relationships and stronger environmental flow criteria, and it could also improve the utility of stream classification 

within ELOHA. This should be evaluated through additional analysis and application. 

Modeled streamflow data does not always classify streams the same as gage data for the same sites. Peñas et al. (2016) 

showed daily and monthly gage data clustered better than monthly modeled data in Spain. Similarly, modeled data provided 385 

different classes than gaged data in North Carolina (Eddy et al., 2017). While model accuracy is always a high priority in 
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hydrologic applications, stream classification is very sensitive to this accuracy, which underscores the importance of accurate 

models within ELOHA. Poor model accuracy not only directly diminishes the utility of flow-ecology relationships, and 

subsequent environmental flow recommendations, but it can indirectly hamper management efforts by providing inconsistent 

stream classes. When ungaged basins are considered in ELOHA, model accuracy must be highly prioritized or else lingering 390 

and compounding errors might spoil otherwise legitimate efforts.   

 From an operational perspective, Hydrologic Model-based Classification is more time-consuming than traditional 

classifications and might become unwieldy when applied across an expansive geographic region with many sites to classify. 

This is because not only must hydrologic models be created and calibrated for every classified site, but each model must be 

analyzed with every other models’ calibrated parameters to produce the critical jackknife resampling error matrix. If ungaged 395 

basins are to be included, however, some extra time spent building models is recouped as they would have been built anyway 

under traditional classifications. This study has demonstrated that HMC is feasible for 25 sites spanning a fairly large and 

highly heterogeneous region in the south coast of California. If a significantly larger region or denser network was the focus 

of this study, HMC would likely provide even more precise classes and accurate streamflow estimates, but with a substantially 

greater time investment. Realistically, HMC becomes less feasible at a state-wide scale or for a large network (~50 sites). 400 

These issues make HMC most effective when used in concert with large-scale classification methods to enhance classification 

for relatively small-scale environmental flow development, which might range from basin-level to spanning multiple counties, 

or with expeditious hydrologic models. 

4.2 Stream classification for regionalizing ungaged basins 

Hydrologic Model-based Classification not only provides new information characterizing regional streams 405 

complementary to traditional classifications, but it can also be used to accurately model ungaged basins across heterogenous 

area through regionalization, as evidenced through the average cluster error metric describing within cluster variability. ACE 

unpacks important information buried inside the jackknife resampling matrix describing how accurately a set of calibrated 

parameters can be donated from its original model to all other models in the region, as if the other models were ungaged. Error 

values from the matrix can be assessed for each model in the region or, when performing stream classification, can be 410 

aggregated to quantify ACE for every class within a given classification. Further aggregation can provide an overall measure 

of ungaged modeling accuracy for an entire classification approach to compare to other classification schemes. A comparison 

of these overall ACE values shows Hydrologic Model-based Classification containing the least within cluster variability, which 

provides the most certainty regarding parameters in models of ungaged basins (ACE 0.3; Fig. 5). HMC was followed by 

deductive classification with drainage area and HGC (ACE 0.4; Fig. 4), inductive classification with < 1 cfs and RBI (ACE 415 

0.6; Fig. 3), and lastly GAGES-II reference status (ACE 1.4).  

By providing a method for reducing parameter uncertainty in models of ungaged basins, HMC has demonstrated 

utility beyond complementary classification. Modeling ungaged basins is fundamental to ELOHA (Poff et al., 2010) and many 

other hydrology applications, but different approaches vary significantly, contain uncertainty, and do not perform particularly 
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well across a geologically and hydroclimatically diverse area (Arsenault et al., 2019; Blöschl et al., 2013). This study provides 420 

a foundation for directly incorporating the regional accuracy of a catalog of hydrologic models into a framework for improving 

ungaged modeling within a heterogeneous region. 

 . This study has shown flow permanence and flashiness were more consistently modeled in ungaged basins containing 

intermittent streams than ephemeral or perennial streams. Extreme sensitivity to precipitation explains why ephemeral streams 

did not produce a low ACE, and, while initially, it may be surprising to see baseflow parameters more accurately interchanged 425 

between models of intermittent streams than perennial, the effluent nature of perennial streams, especially in a region as rapidly 

urbanizing as So. CA, inconsistently augments the natural flow regime (Ponce and Lindquist, 1990), and likely prevented 

accurate modeling in this study. Similarly, flows were modeled with more certainty at GAGES-II reference sites (ACE 0.4) 

than non-reference (ACE 1.9), wherein flow alteration restricts the ability to transform precipitation into streamflow. Based 

on the results of this study, intermittent reference streams are likely most accurately regionalized in the south coast.  430 

 While no combined classification in coastal southern CA was able to predict class membership of all 25 sites with 

100% accuracy, HMC came the closest. This finding underscores the potential for using a measure of model accuracy across 

a region to define hydrologic similarity within stream classification. Olden et al. (2012) split deductive classification into three 

sub-approaches: “environmental regionalization” to provide a spatial representation of stream similarity, “hydrologic 

regionalization” using models to estimate flow in ungaged basins, and “environmental classification” for geographically 435 

independent classification; however, only one inductive approach, ideal for geographic independence, is described: 

“streamflow classification”. The new Hydrologic Model-based Classification developed in this study is based on inductive 

reasoning but is not “streamflow classification”. Instead HMC is a type of “streamflow regionalization” wherein each region 

is a reciprocally low-error class. Instead of defining geographic areas of assumed flow similarity using watershed 

characteristics, “streamflow regionalization” directly groups sites based on modeled flow similarity. This new approach 440 

essentially hybridizes “hydrologic regionalization” and “streamflow classification”. 

Deductive classification produced relatively low uncertainty of model parameters, with all five classes containing 

ACE values between 0.2 and 0.6 (Fig. 4). The relatively tight spread coupled with a low overall ACE (0.4; Fig. 4) implicate 

deductive classification as a worthy alternative to HMC for regionalization of ungaged basins. These results are consistent 

with the most common implementation of regionalization wherein models are typically grouped by spatial proximity, physical 445 

similarity, or parameter regression (Oudin et al., 2008; Razavi and Coulibaly, 2013; Samuel et al., 2011). This study has shown 

how a new type of “streamflow regionalization”, akin to Hydrologic Model-based Classification, might edge out traditional 

“hydrologic regionalization” from deductive classification, at estimating streamflow in ungaged basins. “Hydrologic 

regionalization” and “streamflow regionalization” both implement watershed characteristics to separate sites for high utility 

in modeling ungaged basins; however, “streamflow regionalization” improves modeling by directly incorporating a 450 

quantifiable measure of ungaged model accuracy. This important addition to “streamflow regionalization” directly captures 

regional model uncertainty and strengthens the science supporting modeling ungaged basins. 
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4.3 Stream classification in coastal southern California 

As measured by ARI, traditional inductive classification and reference status classification were the two most similar, 

but still contained high variability (0.12, Table 1). This finding is consistent with how GAGES-II primarily uses flow alteration 455 

to classify reference streams (Falcone, 2011), and with how ELOHA recommends classifying by hydrologic similarity to 

develop flow-ecology relationships (Poff et al., 2010). Furthermore, the reference status classification established a 

relationship, predominately with drainage area, but also silt content, baseflow index, and relative humidity, which could help 

water managers identify streams facing potential flow alteration.  

The two most different classifications in this study were traditional inductive and hydrologic model-based (ARI -460 

0.04, Table 1). Hydrologic Model-based Classification is primarily based on an inductive approach; however, it quantifies 

hydrologic similarity completely differently than traditional inductive classification. The negative non-random relationship 

between these classifications is explained as the traditional approach considers gage data similarity and Hydrologic Model-

based considers model data similarity of the same metrics. The differences in these two inductively-based classifications 

underscore the complexity in modeling streamflow permanence and flashiness in So. CA and suggest great effort must be 465 

taken when modeling ungaged basins in the south coast region. 

Using ARI, this study has demonstrated how four unique stream classifications can each provide important, 

complementary information regarding how streams across a region may be grouped for management. While the two 

inductively-based classifications appear the most useful for separating gaged and ungaged sites, respectively, important 

relationships and management opportunities can be revealed through a robust regional stream classification using multiple 470 

approaches. 

5 Conclusions 

Accurately modeling ungaged basins is often necessary for quantification and management of environmental 

streamflows (Poff et al., 2010), but it is a difficult undertaking with no consensus approach among the hydrology community, 

especially in heterogenous regions (Arsenault et al., 2019; Blöschl et al., 2013). Furthermore, stream classification is one of 475 

the four major steps used to develop environmental flow criteria within ELOHA (Poff et al., 2010), but it is not always used 

in the framework (Kendy et al., 2012). This study sought to increase the utility of classification within ELOHA while 

simultaneously strengthening the science supporting modeling and management of ungaged basins in heterogeneous regions. 

To this end, Hydrologic Model-based Classification was developed to provide: complementary classification information, 

improved ungaged model accuracy, and new opportunities for stream management. Iterating between the first two steps of 480 

ELOHA (hydrologic foundation and classification) within HMC improves both steps and produces stronger environmental 

flow criteria.  

While this study focused on streamflow permanence and flashiness due to their known ecological importance in the 

study region (Gasith and Resh, 1999; Mazor et al., 2018; Parker et al., 2019), additional flow metrics corresponding to other 

https://doi.org/10.5194/hess-2021-553
Preprint. Discussion started: 10 January 2022
c© Author(s) 2022. CC BY 4.0 License.



19 

 

element of the flow regime are ecologically-relevant in So. CA (Yarnell et al., 2020) and could be incorporated. To develop a 485 

better understanding of HMC in general, it could be extended to new regions and compared to the results of this study. This 

could produce general relationships between different classifications and provide insight into which classification approach 

might be most appropriate for specific applications and regions. Likewise, a type of nested classification similarly implemented 

across many regions would help different stakeholders understand how management actions at multiple geographic scales 

might affect streams and would foster coordinated management relationships. As HMC is expanded to additional regions, a 490 

better understanding of the similarity of within-class management plans will be developed. These findings will be highly 

dependent on the management metrics and regions, but a general sense for management plan transferability within low-error 

classes will offer a clearer understanding of how Hydrologic Model-based Classification might assist in ungaged stream 

management without ever modeling the basin. 

 For coastal southern California, HMC results from this study should be further developed into a full framework for 495 

modeling time-series of discharge in new ungaged basin(s) from the heterogenous region. This would foster a better 

understanding of the modeling complexities within Hydrologic Model-based Classification, and its associated new 

regionalization framework, and would provide the basis of a hydrologic foundation prioritizing ungaged basins, which is 

needed to develop robust regional environmental flow criteria in So. CA. 
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